Localization and Mapping Using NI Robotics Kit

Anson Dorsey (ajd53), Jeremy Fein (jdf226), Eric Gunther (ecg35)

Abstract

Keywords: SLAM, localization, mapping

Our project attempts to perform simultaneous local-
ization and mapping (SLAM) using an autonomous
mobile robot with a single ultrasonic ranging sensor.
We developed a complex system to exchange data and
instructions between the NI Robotics Starter Kit hard-
ware and an ezxternal data-processing computer. Be-
cause of an unreliable ultrasonic sensor on the NI
robot, rather than traditional SLAM we implement a
novel way to build a real-time, dynamically changing
probabilistic map, yielding decent performance in sim-
ple environments.

1 Introduction

Simultaneous localization and mapping using au-
tonomous mobile robots is a fairly common problem.
One of the primary challenges facing robots is a re-
liable way to localize and define its environment to
enable it to perform assigned tasks. There are several
approaches one can take in designing a robot, and we
sampled two of them in the course of this project. Our
initial attempt was traditional; we wanted to use a
Kalman filter on odometry and ultrasonic sensor data
to landmark and localize the robot in a room while us-
ing the sensor to define objects and approximate the
dimensions of the room. We ran into problems when
our algorithm indicated that the accuracy of the ul-
trasonic sensor was on par with the odometry. The
sensor was too unreliable to effectively identify ob-
jects; it is also unidirectional, so our robot could only
track landmarks in front of it. Our robot typically
saw zero or one possible landmark, which isn’t nearly
enough for a reliable localization (this is probably why
most other robots use a LIDAR to run SLAM). Our
solution was to take a probability-based approach; we
used odometry and sensor data to assess the likelihood
of the robot’s and objects’ locations in a discrete grid
of the environment. This improved the results, and
we were able to obtain a very rough representation of
an environment.

2 System Overview

We use MATLAB for all of our data processing and
analysis on the external computer. The LabVIEW
layer controls the actual robot and the TCP layer
connects LabVIEW with our MATLAB base station.
We have one computer which runs three instances of
MATLARB: one for receiving data from the robot, one
for sending data to the robot, and one to perform
data analysis and navigation. The following flochart
describes the dataflow of our entire system.

Dataflow of Complete System

NI Robot
TCP Client (—suggestion. txt-»| Roa\;rlung data.txt—| TCP Server
Port 5002 Port 5001
suggestion.txt data.txt
Main A
TCP Server («-suggestion.txt— X f«——data.txt TCP Client
Algorithm

MATLAB

All data analysis and TCP transfers takes place in
real time as the robot roams. LabVIEW runs its main
roaming VI and saves sensory data to data.txt while
loading trajectory suggestions from suggestion.txt
(see Section 2.1). TCP transfers updates to these
files in real-time. MATLAB runs a constant loop,
looking for new sensory information received from the
robot in data.txt. The data is processed in real time,
and plots of the robot moving in real-time along with
trajectory suggestions are generated. The new robot
heading is sent back to the robot to be used in its
main loop, and the cycle continues unless stopped re-
motely. The entire engineered system effectively and
efficiently performs real-time data acquisition, analy-
sis, localization, mapping, and control.



2.1 NI Robotics Kit and LabVIEW

For this project, we were given a National Instru-
ments Starter Robotics Kit to be programmed in the
LabVIEW Robotics platform. The platform comes
equipped with an FPGA processor and a higher-level
processor that relay between each other. The robot
is designed with differential drive and a Parallax Ul-
trasonic Sensor mounted to a servo, all of which are
wired directly to the FPGA. Everything, including
the FPGA, is programmed in LabVIEW. Unlike typ-
ical imperative programming languages, LabVIEW
follows a data-flow style paradigm, where there are
functional ”blocks” literally wired together by inputs
and outputs. There is no code involved whatso-
ever, only building bigger blocks out of basic, fun-
damental blocks. This unconventional data-flow style
of programming is very inefficient and computation-
ally weak to the experienced programmer. Therefore,
rather than performing the advanced algorithms nec-
essary for our project on the robot itself, we opted
to outsource data analysis and computations to an
external computer.

A major principle of LabVIEW is to use VI blocks
(LabVIEW’s equivalent to a function) already writ-
ten and to simply modify them or use them in a big-
ger system rather than doing it by scratch. Thus, we
used the already written Starter Kit Roaming project
provided with the robot as our starting point. This
project contains an FPGA VI to control the robots
wheel encoders, ultrasonic sensor, and the servo mo-
tor. The main VI initializes the FPGA connections
and uses standard robotics navigation VIs along with
ones made for this specific platform to roam a ran-
dom environment aimlessly and avoid obstacles using
ultrasonic sensor data and simple obstacle avoidance
algorithms. Here, the ultrasonic sensor is merely used
to indicate ”object ahead” or ”no object ahead”, and
the simple algorithm, unlike complex SLAM, does not
require precise nor accurate data. This algorithm runs
one iteration every 10ms and continues unless stopped
remotely.

Our modifications to the provided VI are focused on
integrating this existing, obstacle-avoiding algorithm
with our entire control system with an external com-
puter. This involved sending ultrasonic and odometry
data from robot to computer and receiving movement
instructions from computer to robot. Every iteration,
the counter clockwise left and right wheel velocities
(in rad/sec), the servo sensor angle, and the ultra-
sonic sensor reading are encoded and written to a data

file (see section 2.2). The VI also updates the steer-
ing frame each 10ms iteration by applying an array of
three numbers, an x-direction velocity (always 0 for
differential drive), a y-direction velocity, and an an-
gular velocity, to an encoding algorithm that converts
the trajectory to left/right counterclockwise wheel ve-
locities to send to the FPGA. The trajectory chosen
is either to turn and move backward if the obstacle
avoidance algorithm returns an obstacle ahead or to
load a trajectory from a local file that is computed
by the external computer and sent real-time through
TCP to LabVIEW (see section 2.2). In addition to
these modifications, a TCP server and TCP client
were written to cater to the LabVIEW algorithm and
our system as a whole to allow real-time data trans-
fer of sensory information and trajectory information
between the robot and an external processing laptop.

2.2 TCP

From the conception stages of this project is was ob-
vious that LabVIEW would be insufficient to perform
the data processing and algorithm implementation re-
quired to successfully localize and map an environ-
ment. We decided instead to use a TCP connection to
transmit data from the robot to an external computer
running MATLAB. TCP is more complex than UDP
yet more reliable, making TCP a better choice since
we can’t afford to lose any information during trans-
fer. Outsourcing computation is disadvantageous in
that the robot must still physically connect to a net-
work, and it is impractical to run an ethernet cable
to a roaming robot. Thus, we decided to mount a
wireless router on the robot that any computer with
a wireless card could connect to.

By necessity we threaded the TCP connections with
our data processing. For simplicity, we opted to have
two separate TCP connections operating in two sep-
arate threads and to let our computer’s OS handle
the threading by simply running multiple instances
of MATLAB. One instance retrieves the latest data
from the robot and another sends exploration sug-
gestions to the robot. To form the actual TCP con-
nections in MATLAB, we used code for an exam-
ple client and server with some small modifications
(iheart MATLAB.blogspot.com/).

For sending exploration suggestions, MATLAB listens
as a TCP server on port 5002 for a LabVIEW TCP
client. MATLAB sends 24 bytes, or 3 sets of numbers
each 8 hex characters long; the first must be zero, the
second contains forward velocity, and the third con-



tains angular velocity. The values MATLAB sends are
determined by our controller function and act more
as trajectory suggestions rather than real-time navi-
gation (see Section 3.5).

For data acquisition, LabVIEW maintains a TCP
server that waits for a MATLAB client request on port
5001. After some hacking, we figured out that Lab-
VIEW limits TCP send size to 8192 bytes per trans-
mission. Hence, we are forced to query data as quickly
as possible. In practice a data package is acquired
from the robot roughly every 1.8 seconds. Our first
attempts at real-time transmission failed; our data
acquisition rate was far greater than our transmission
rate. Since we cannot speed up the transmission rate,
data compaction is the only alternative. LabVIEW
was initially transmitting data as floating point dou-
bles, but maximum value of any single piece of trans-
mitted data is 16, meaning we waste the most signifi-
cant bits in a double representation. Instead, we con-
vert the doubles to strings of 6 hex characters, which
doubled the significance of each character from 4 bits
to a full byte yet forced rounding of decimals. To keep
decimal data, we multiplied each data point by 10,000
before transmission, rounded, and divided by 10,000
on the other side. After encoding the data, we can
send, on average, more than 300 lines of information
(3 seconds of data) in 1.8 seconds; this throughput
is more than sufficient for real-time data transmis-
sion. If we had not threaded the TCP data acquis-
tion and the data processing, the external computer
would quickly fall behind the robot’s data transmis-
sion, since it would take more than 3 seconds to obtain
and process 3 seconds of data, reinforcing our decision
to run separate instances of MATLAB.

To communicate between instances of MATLAB, the
TCP client writes and received packet to a text file,
and the TCP server loads data to be sent from a text
file. Thus, the main processing thread has to only
fetch new data from the data text file and save the
current trajectory suggestion to a suggestion text file.

On the LabVIEW side, we also had to do a great deal
of hacking to ensure lossless data transfers. Our main
concern was running out of memory and losing new
data after running the robot’s real-time data acquisi-
tion for a long time. Originally we designed a system
with two text files on the robot where one is transmit-
ted while the other is written to and their roles switch
upon a successful transfer, but this dropped some data
and was quite unpredictable. However, compresing
the saved doubles as 6 hex characters yielded suffi-

cient storage; given that a line of data is collected
every 10ms, each line has 4 values, and each value is
expressed using 6 hex characters (1 byte each charac-
ter), data is acquired at a rate of 24 bytes in 10ms or
2.4 kilobytes/second. The robot has 61 Megabytes of
storage, and we assumed we could safely use 50MB;
this allows for 347 minutes of data acquisition. Six
hours is beyond the normal use of this robot, so we
decided that only using one text file in LabVIEW was
sufficient.

2.3 Odometry and Ultrasonic Sensor
Data Reliability

The bulk of the issues we encountered in the project
were direct results of poor sensor performance. Ini-
tially, we weren’t aware of the issues, as the sensor
gives decent performance when sweeping while the
robot is moving. However, we realized the neces-
sity for our robot controller to, on occasion, stop and
sweep to extract landmarks and walls; at this point
we noticed that the sensor performance was unusable
for non-point objects. Once we started seeing poor
data we examined the sensor results in further detail.

The largest contributing error is likely a physical re-
straint of the sensor. As defined in the spec sheet,
the sensor projects and receives signals in a 20 degree
arc, returning the smallest measured value (the closest
object) in the cone, which isn’t necessarily directly in
front; it cannot measure with confidence that an ob-
ject is directly ahead in the direction it is pointing,
only that an object is +/- 10 degrees of the aimed
direction. Our algorithm takes this into account and
tracks the likelihood of objects in the swept cone (see
Section 3.4), but the result is an inherent imprecision
of localizing objects.

The following graphs exhibit the performance of the
sensor in both sweeping and non-sweeping cases. Both
tests are the same; the robot starts 2.5m away from
a wall, moves to about 1.25m, pauses and then moves
toward the wall and stops around .25m. In the case of
no sweeping, the resulting data is unusable; we cannot
identify conclusively the wall distance from the robot
except when it is stationary at 155cm. At any other
time, the sensor data is either incorrect or returning
values below it’s operating range.

Sensor Sweep



Robot without sweeping: start 256cm, move to 1565cm and stop, move to 52cm and stop
6 T T T T

Reported sensor distance

L . L
0 500 1000 1500 2000 2500
time (ms)

We hoped that sweeping the sensor would improve
the results though this was not the case. Again, the
sensor did relatively well while stationary at 122cm,
but the majority of the rest of the data is unusable.

Sensor No Sweep

Robot with -30 to 30 sweeping: start 240cm, move to 122cm and stop, move to 42cm and stop
25 T T T T T

]

Reported sensor distance

05F

. . . L A
0 500 1000 1500 2000 2500 3000
time (ms)

The sensor performs very poorly in most situations.
The spec sheet states its range is 2cm to 3m, but we
received accurate results in only a tiny range of the
manufacturer specified operating range. More hack-
ing and advice from Professor Saxena revealed that
the best data is returned when the robot is moving
and sweeping; though this is the best case scenario
the resulting data is still quite bad when the robot is
sensing broad objects, such as a wall, as shown by our
test plots.

On the other hand, our odometry data is compari-
tively good; our average error from the differential
drive calculation was off by 1.4cm every meter, and
an average angular error of 2.2 degrees on every 360
degree rotation.

Because the sensor is so poor, we had to make drastic
changes to our planned algorithm. The Kalman filter
we developed gave a significant amount of weight to
the odometry data; this signifies that the ultrasonic
sensor results and odometry data are of comparable
trustworthiness. The odometry data is also inaccu-
rate, as we expected, but without a trustworthy sensor
we had to reformulate our plan of attack on SLAM.
We were unable to landmark with any accuracy since
the sensor is too poor to allow for confident identifi-
cation of objects.

3 Modified SLAM Algorithm

Our initial goal was to perform SLAM using tradi-
tional methodology: use a Kalman filter to improve
odometry data from extracted landmarks in ultra-
sonic data, assuming this data is reliable enough to ex-
tract landmarks, keep track of their positions, and be
inherently better than odometry data. As discussed
in 2.4, this does not apply to our hardware. The ul-
trasonic data is much worse and less reliable than the
odometry data, so there is no way to perform a tra-
ditional SLAM with a Kalman filter. Thus, we have
created our own dynamic, probabilistic mapping al-
gorithm.

3.1 Virtual Data Acquisition and Initial
Testing

Early in our project, before we integrated our MAT-
LAB algorithm with the NI robot’s interface, we de-
veloped a means of creating synthetic robot data to
test implementation of our algorithm. This system
allows a complete simulation of the robot and the ul-
trasonic sensor running in a user defined environment,
simulating the NI robot’s role of data acquisition and
data transfer in MATLAB as it relates to our entire
system (see Section 2.4). To define an environment,
we created a MATLAB GUI to draw walls to map
out a room. The robot is simulated to roam this en-
vironment based on suggestions from a navigation al-
gorithm (see Section 3.5) and acquire the virtual for-
ward distance to the closest wall, thus simulating the
ultrasonic sensor. Random Gaussian noise is added
to the virtual odometry and ultrasonic sensor read-
ings to mimic what we deemed to be the behavior of
the robot. The virtual data is sent to our main MAT-
LAB algorithm to be processed the same way as real
data and returns navigation instructions back to the
simulated robot.

This overall robot simulation allowed us to begin en-



gineering our MATLAB system while the TCP data
transfer and LabVIEW VI were still being developed.
We started by designing the algorithm’s overall struc-
ture (see Section 3.2) with the traditional SLAM al-
gorithm (see Section 3 header), but later realized this
methodology only applied to our simulated data with
Gaussian noise, not the real, unreliable, inaccurate
data acquired by the NI robot. Therefore, we were
forced to develop a new approach.

3.2 MATLAB Algorithm Overview

Our main MATLAB program runs on an independent
thread to perform all external data analysis. The al-
gorithm runs a loop that performs updates to the per-
ceived map and robot’s location while generating nav-
igation suggestions (to suggestion.txt) based on any
newly acquired robot data (in data.txt) since the last
iteration. The loop is structured as follows:

while {robot acquiring new data}
Fetch new data (see Section 2.2)
for {each datapoint in fetched dataset}

Update robot’s location from odometry data (see Sec-
tion 3.3)

Update object locations from ultrasonic data (see Sec-
tion 3.4)

}

Generate trajectory suggestion for robot (see Section
3.5)

Plot the updated map and location (see Section 3.6)

}

Extrapolate objects and walls from final mapping (see
Section 3.6)

In MATLAB, the robot’s environment is represented
as a matrix with each entry corresponding to a quan-
tized 5ecm x 5em block in space. The robot’s posi-
tion is represented as a coordinate in the discrete ma-
trix. The value stored at a point (a,b) corresponds to
the perceived likelihood of an obstacle being present
at that block in space, based solely on ultrasonic
data (see Section 3.4). Thus, our algorithm builds
a dynamically updated, probabilistic mapping of the
robot’s environment while keeping track of a rough
location of the robot, essentially achieving SLAM.

3.3 Odometry and Localization

The robot’s current state is represented by an x-
position, a y-position, and an absolute angle. Updates
are performed to the state using standard forward
kinematic equations of differential drive, modified for
a robot with 4 wheels by dividing the updates by two.
This method relies on the robot’s wheel radius, dis-
tance between wheels, the current state, the left /right
angular wheel velocity, and a time step (10ms for our
robot). A state update is calculated and applied for
each piece of data in the fetched data set being pro-
cessed each loop iteration.

Since the ultrasonic sensor data is too unreliable, a
Kalman filter cannot be applied to correct update er-
rors from odometry errors. Instead, we initially took
a probabilistic approach to localization by updating
the probability of the robot occupying each block in
the environment’s matrix representation as it moved;
over time the probabilities became too diluted to ex-
tract anything reasonable, and we opted to localize
a single point. Therefore, robot’s current location is
based solely on odometry data.

3.4 Sensor Readings and Object Likeli-
hood Grid

To build a map of the environment from acquired ul-
trasonic data, our algorithm dynamically updates an
object likelihood grid, where the value at a point (a,b)
correspond to a count of the number of times an ob-
ject was perceived at that quantized block in the en-
vironment. As described in Section 2.3, the ultrasonic
sensor returns the smallest distance perceived in a 20
degree cone, which is not guaranteed to be the direct
forward distance. To account for this, we place ob-
jects along the arc of the sensor’s cone at a radius
equal to the sensor’s measurement. With the sensor
sweep angle, the robot’s current location, and the sen-
sor’s measured distance, we generate a list of possible
object locations for that one sensor measurement.

Using this list of possible object locations allows us
to perform an update to the object likelihood grid. If
an object in the list is at point (a,b), then the value
at (a,b) in the likelihood grid is incremented by 1, in-
dicating we have perceived an object there one more
time. Therefore, the more we sense an object at that
point, the higher the count becomes and the more
confident we are an object exists at that location.
Additionally, since the ultrasonic sensor returns the
minimum distance in the cone, we can assume there
is only empty space in the cone between the robot



and the distance returned, and any point between the
robot’s position and a perceived object’s position can-
not contain an object (if that measurement is reliable,
that is). To reflect this, a ray is traced between the
robot and each object in the list of possible object lo-
cations, and any point along the ray is decremented by
1 in the object likelihood grid. This corrects for mis-
perceived objects, makes the mapping truly dynamic,
and increases the reliability of the object likelihood
grid as a whole. Finally, the object count at the point
where the robot is located is decremented by 1; the
robot cannot be where an object is, and we trust our
odometry data more than our ultrasonic data.

Like the localization updates, this process of extract-
ing a list of possible objects and updating the object
likelihood grid is repeated for every acquired sensor
measurement in the most recently fetched data set,
and over time effectively maps the environment. The
definite objects will have very large counts as they
are sensed more, and areas definitely without objects
will have very large negative counts as they are sensed
less.

3.5 Control and Navigation

For the robot to thoroughly explore an area, it must
react based on the current object likelihood grid and
explore the areas that aren’t well defined. There are
two parts to this; one function to take the area and
computes a destination and another to take a desti-
nation and current location and compute a heading
suggestion in the form of forward and angular veloci-
ties.

The goal of the navigation algorithm is to calculate
the best vector to explore and turn it into a desired
point. The algorithm looks at the object likelihood
grid in a range of area surrounding the robot and cal-
culates a weight of objects in all directions; if a direc-
tion is dense with objects (either in quantity or confi-
dence) it is assigned a negative weight since the robot
has already explored there, and if a direction is sparse
of objects it is assigned a positive weight to indicate an
unexplored area. It then averages the weighted vec-
tors to calculate a desired exploration vector, which,
as a result, is the opposite direction of the area with
the most perceived dense objects and towards the di-
rection of the area with the least perceived dense ob-
jects. The navigator calculates a desired point to ex-
plore to from this averaged vector and returns that
point to the controller.

The controller takes the current location of the robot

and a desired location from the navigation function
and translates it into forward velocity and angular
velocity. The controller returns one of three possible
movement modes. If the desired location is within +/-
22.5 degrees of the robot’s heading and greater than
2 meters away, it will move forward quickly. If the
destination is within +/- 22.5 degrees and closer than
2 meters, it will move forward slowly. In any other
case it turns slowly until it is oriented correctly. Af-
ter calculating the trajectory, the forward speed and
angular velocity are written to a text file that can be
loaded and translated by the MATLAB TCP Server
thread (see section 2.2).

3.6 Extrapolating Walls from Data

Once the object likelihood grid was constructed we
needed a way to extract lines from the data in order to
properly assess possible walls. We accomplished this
using a modified RANSAC (RANdom SAmple Con-
sensus) method that depends on a variety of parame-
ters. The algorithm makes N attempts at extracting
lines from the data points in the object grid. Each
time a random point is selected and every D degree
cone surrounding the point is investigated. If S points
lie within M distance from the point (and within the
cone) then these points are appropriate for creating a
wall. To make the best possible wall we use a linear
least squares data fit and then remove those points
from the object grid. Once this is finished the process
is repeated until N attempts have been made or there
are no points left in the grid. This parametrized ap-
proach allows for tuning and catering the method to
different situations.

Sensor Sweep Wall Extraction

Sensor Sweep

136 1
136 1
40 b
4zt

144 L

148
150
152+
154 ¢

156 ¢




4 Results

Our first test involved moving the robot straight to a
wall under manual control. As seen in the plots below,
the robot sees an area of high object likelihood where
it perceives the wall. The darker the blue, the more
likely an object occupies that point. Because objects
are extracted from a cone, the straight wall appears
curved, with the outer points having less likelihood
than the inside points. The final wall extrapolated, as
seen below, is perceived by the robot to be .95m long,
when in reality it was 1m long, an error of 5%. Sub-
sequent tests reinforced this error. Thus, our system
is capable of basic wall extrapolation when moving
towards a wall.

Test 1: Move DTowards Wall

-0.2793
02194

90
100
10
120
130
140 /{

150 e
160
170

180

L L L L L L L L L \
&0 B0 70 80 90 100 Mo 1200 130 140 180

Test 1: Move Towards Wall w/ Extraction

Sensor Sweep

90
100
altl
120
130
140 :

180

160

170

180

50 B0 70 80 90 100 1100 120 130 140 150

Mapping an environment consists of extrapolating
straight walls, as seen in the previous test, and cor-
ners. The next test involved the robot moving towards
a 90 degree corner under manual control. We guided
the robot to move straight towards the corner, stop,
and rotate to see the entire corner. As seen in the fol-
lowing figures, the robot sensed two distinct walls that
were extrapolated to a corner. Although this is not
ideal, we feel that this is the best possible extraction
based on the data received from the robot.

Test 2: Move Towards Corner
g

-0.288

22146
90
100
110
120
130
140
150 = #
160
170
180

B0 70 a0 a0 100 1100 1200 130 140 150

Test 2: Move Towards Corner w/ Extraction
Sensor Sweep

90
100
110
120
130

140 >

1850 =

160

170

180

B0 70 80 a0 100 1100 1200 130 140 150

Knowing that our system is somewhat able to extrap-
olate corners and walls effectively from the data, the
next test is to map out a simple environment. This
test, along with testing our SLAM algorithm, will
test our navigation’s algorithm to move the robot to
object-sparse areas. The plots below show the result-
ing map of a 2.6m x 2.3m room. The extrapolated
room was perceived to be 2.54m x 2.28m, with an er-
ror of 1.6%. Because of the ultrasonic cone, the room
appears to be circular rather than square an extension
of the curved corner problem from the previous test.
Subsequent attempts to map a simple room yielded
similar results. When mapping a room with an open-
ing (eg, a door), the robot would navigate through
the opening in an attempt to map a wall in that area,
proving the effectiveness of our navigation algorithm.

Test 3: SLAM Simple Room



4
03491
06145

-

T ATY

120 e

B0 70 a0 a0 oo 1100 1200 1300 140 150

Test 3: SLAM Simple Room w/ Extraction

Sensor Sweep

B0 70 a0 a0 oo 110 1200 130 140 150

5 Conclusions and Future Work

Although our results aren’t as expected, we feel that
we accomplished as much of our original goal as pos-
sible given our hardware constraints. Our robot can
give a decent approximation of a room and is able to
thoroughly explore an area; our navigation algorithm
will find doorways and lead the robot through them
to explore additional rooms. We feel that we were
able to squeeze results out of data that had serious
inaccuracies, and that our results are strong given the
weaknesses of the robot’s hardware. Our SLAM al-
gorithm is designed to work around inconsistent data
and, instead of trying to create a perfect map, comes
up with a maximum likelihood representation of an
area. With a better sensor, our algorithm would likely
produce highly accurate results, even without extract-
ing landmarks.

The practical applications of our solution are quite
promising. Though the map it creates is sub-par to
a robot using a very expensive LIDAR, our algorithm
gives decent performance using a sensor that costs
$30. For low-cost robots that only need a rough rep-
resentation of surroundings, our algorithm and asso-
ciated hardware provide an ideal solution.

Since all computation is outsourced and the process-

ing / sensing on the robot can be achieved for cheap,
the MATLAB Robot system we developed can ide-
ally be used to have many small, cheap robots roam
an environment to create an even more detailed, dy-
namic probabilistic graph. This would only require
more TCP connections in the TCP MATLAB threads
and essentially no change to our main processing algo-
rithm. With more time, resources, and a better robot
platform, a swarm of robots could ideally achieve our
goal faster and more accurately.

6 Note to graders

Please see the wmv file attached for a video demon-
stration of the project. Please contact us if you wish
to view the code repository as it is rather large.

References

[1] R. Thomson "TCP/IP  Socket Commu-
nications in  MATLAB” Gaffer  Tape
and Matlab 9/7/2009 [Online] Available:

http://iheartmatlab.blogspot.com/2009/09/tcpip-
socket-communications-in-matlab.html

[2] E. Papadopoulos, M. Misailidis. ”On Differential
Drive Robot Odometry with Application to Path
Planning,” Proceedings of the European Control
Conference 2007 pp. 5492-5499

[3] S. Riisgaard, M. R. Blas ”SLAM for Dummies”



